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ABSTRACT
Detection of malicious traffic on a network is critical to ensuring the
safety and security of internet systems. Classical approaches to this
task increasingly struggle with modern networking procedures, like
encryption. Deep learning (DL) offers an alternative approach to traffic
classification problems. We address two major problem classes: (1) bot-
net detection and (2) botnet family classification. For each problem, we
explore five implementations of DL architectures: a multi-layer percep-
tron (MLP), shallow and deep convolutional neural network (CNN v1
and CNN v2), an autoencoder (AE) and an autoencoder + convolutional
neural network (AE+CNN). We recognise a lack of surrounding litera-
ture which consider the computational requirements as an important
aspect of model evaluation. Consequently, our evaluation of models
for each respective problem class is based on the classification and
computational performance of each model. We further investigate the
effect of training the models on an input with a reduced feature space,
where we discuss the impact this has in terms of a trade-off between
computational and classification performance. For botnet detection,
we find that all models attain good (≥ 0.979 accuracy) classification
performance on a normal testing set; however, this performance drops
fairly substantially when evaluated on a set of unknown botnet fami-
lies. Furthermore, we observed a clear trend between increased feature
space and memory utilisation, while finding no evidence of a trend
between inference time and feature space. For botnet classification, we
found that models which implement CNN architectures outperform
others by a substantial margin (≈ 6 percentage points). We observe
the same trend between feature space and memory utilisation, and
absence of apparent relationship between feature space and inference
time.
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1 INTRODUCTION
The proliferation of computers and networks as tools essential to mod-
ern life has resulted in innumerable benefits. However, adoption of the
associated technologies has created new security dynamics to consider;
specifically in the form of malicious software, or malware. Malware
is an umbrella term that encompasses various types of software de-
signed to infiltrate systems without permission, aiming to cause harm
or exploit vulnerabilities, often with a financial motive [15].

While there are numerous sub-categories of malware, we focus
attention on botnets, out of recognition that the increasing number
of security-vulnerable Internet of Things (IoT) devices offer an ideal
landscape for botnets [3]. A botnet defines a distributed network of
computers, or bots, infected with software that enables the bots to
be controlled by a malicious operator, or botmaster [1, 17]. A botnet

typically leverages one of many additional types of malware - such
as a worm - to propagate itself across multiple computers, and can
incorporate a centralised or decentralised operating procedure [17].
Moreover, botnets attempt to hide themselves by transmitting normal
traffic amongst their botnet traffic [17]. However, a defining charac-
teristic of botnets is the presence of command and control channels,
through which the malicious operator is able to transmit instructions
or receive information. A common instruction would be a distributed
denial-of-service (DDOS) attack, where the bots flood a target to dis-
rupt its service [1, 3]. It is this characteristic of botnets - that the bot
must at some point connect to its botmaster - that may be leveraged
to build detection models. When a bot connects to the botmaster, a
sequence of network flows, defined as a grouping of related traffic, can
be extracted from the generated traffic, from which a deep learning
(DL) model will be able to learn distinguishing patterns [17]. DL is a
field within machine learning which is defined by the use of multi-
layered architectures, enabling models to learn complex, hierarchical
patterns from data without requiring feature engineering [12, 19].

Preventative measures against malware, and botnets, are not a novel
concern; and there are existing approaches to detect and block mali-
cious traffic on networks. These approaches typically deploy a Network
Intrusion Detection System, or NIDS [18]. NIDS operate by implement-
ing a broad range of techniques to detect and identify malicious traffic:
notably, port analysis, blacklisted IP addresses, and inspecting packet
payloads [16, 29]. Recently adopted practices around networking have
dampened the effectiveness of these techniques, making NIDS which
use them less reliable. Port numbers have become less reliable indica-
tors of application type; additionally, the existence of port-obfuscation
enables creators of malware to avoid detection [29]. Similarly, dynamic
IP addresses and IP spoofing make systems which filter traffic based on
blacklisted IPs unreliable. Finally, approaches which aim to detect mal-
ware by inspecting the payload contents of packets flowing through
the network face increasing difficulty as more network traffic adopts
encryption protocols - a Cisco report from 2017 noted that ≈ 75% of
analysed malicious traffic made use of encryption [26].

In recognition of the shortcomings of existing malware detection
practices, we define an objective to evaluate the effectiveness of dif-
ferent DL algorithms when tasked with detection and classification of
botnet traffic using network flows. More specifically, we implement a
series of binary classification models to detect malicious traffic, and
secondary of multiclass classification models to classify botnet traffic
into respective families. While this approach is not itself novel, much
of the existing literature evaluates the effectiveness of DL models in
terms of the accuracy, F1-score, False Positive Rate (FPR), and False
Negative Rate (FNR) [17, 22, 28]. 1 These metrics provide insight into
classification performance; however, we argue that insight into the
computational requirements of a model are important. A model which
attains good accuracy scores might be impractical due to its computa-
tional requirements, especially on smaller, lower-resourced networks.
Moreover, models are trained on a datasets made up of only subset of

1Definitions for these are found in 6.1 and 9.3
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existing botnets, and newer botnets are continuously developed. Eval-
uating models on an unseen testing set comprised of botnet families
present in their training set ignores this concept. As a result is greater
uncertainty into a model’s ability to generalise to newer botnets.

Many existing machine learning based approaches to malware de-
tection require datasets with hand-selected features, a process which
is both time consuming, and requires expert domain knowledge [4].
DL approaches are able to avoid this requirement, as they typically do
not require careful feature selection. The consequence of this is that
larger feature spaces create models with significantly more trainable
parameters, impacting the model’s offline performance metrics like
inference time and memory utilisation [19].

We propose an alternative, holistic approach to model evaluation
which whereby we use the conventional classification performance
metrics on a normal testing set, as well as a supplementary testing set
of unknown botnet families which aids evaluation of a model’s ability
to generalise to zero-day attacks. Further, we evaluate the effect that
feature space size has on computational performance, in terms of a
model’s inference time and memory utilisation.

1.1 First Research Objective: Botnet Detection
We implement five binary classification models, an MLP, shallow CNN
(v1), deep CNN (v2), AE, and AE+CNN, which serve as models for
botnet detection. With respect to each classifier, we aim to:

(1) Evaluate the accuracy, FPR, and FNR on the standard and proto
zero-day test set.

(2) Evaluate how reducing the feature space, into 50% and 30%
samples, impacts the memory requirements, inference time,
accuracy, FPR, and FNR of the models.

1.2 Second Research Objective: Botnet
Classification

We implement five multiclass classification models, an MLP, shallow
CNN, deep CNN, AE, and AE+CNN, which aim to identify respective
families of botnets. With respect to each classifier, we aim to:

(1) Determine the overall accuracy, and accuracy respective to each
class, when evaluated on the standard test set.

(2) Evaluate how reducing the feature space, into 50% and 30%
samples, effects the memory requirements and inference time,
in relation to the overall accuracy of a model.

2 BACKGROUND
2.1 Classification Approaches: Payload vs. Flow

Based
Network traffic is made up of discrete blocks of data, called packets,
which travel through a network. Approaches to classify network traffic
typically make use of training data which captures either the individual
packets payload, or network flows. Informally, network flows repre-
sent a sequence of packets from end-points on a network - ideally,
bi-directional flows, which capture the flow of traffic from the source
and destination [29]. Statistical features can be extracted from network
flows, which explain metrics such as the rate at which packets flow
back and forth, and the mean packet size of the flow [7].

Another approach is to use the core contents of a packet, i.e. the
payload, as training data. The notion is that the payload of malicious
traffic contains at least part of the malware binary, from which a model
would be able to recognise patterns belonging to this binary [11].
Payload based approaches face the difficulty of classifying encrypted
traffic - a problem that flow-based analysis avoids, since only the packet

headers are required to extract flows from traffic captures, which are
not encrypted [12]. There have been implementations of payload-based
classifiers which are able to handle encrypted traffic [4, 10, 11]. These
approaches typically require thorough processing steps to prepare
the data for classification, which makes payload-based approaches
ill-suited to real world application. Conversely, aggregated network
flows are comparatively easy to extract [18].

2.2 Multilayer Perceptrons
Multilayer Perceptrons (MLPs) were one of the earliest forms of neural
networks, and as such, express concepts which are fundamental to
the more advanced neural network which are discussed further on.
The goal of an MLP model is to, as best as possible, emulate some
non-linear function [6]. MLPs offer a relatively simple example of a
DL algorithm, and may offer a sense of how difficult a classification
problem is.

2.3 Convolutional Neural Networks
Convolutional neural networks (CNNs) have become increasingly
popular algorithms for classification [14]. Typically CNNs work with
grid-like inputs, such as an image, where a convolutional operation
will sweep over the grid, producing a feature map which represents
significant areas of the input. These feature maps enable the model to
learn identifying spatial patterns in data. Most applications of CNNs
use two-dimensional image data, or image-representations of streams
of one-dimensional data. However, the fundamental principle of a
sequence of convolutional layers that identify increasingly complex
patterns in the data holds for inputs which are not grid-like in nature -
e.g. a network flow, which is a one dimensional vector [2].

2.4 Autoencoders
Autoencoders (AE) are a type of unsupervised learning algorithm that
aim to compress input data into a lower-dimensional "latent" vector.
As output, an approximation of the input is reconstructed from the
latent vector, through a decoding process [6]. When applying AEs
to classification tasks, the decoding process can be replaced with a
classification layer (like a softmax or sigmoid layer). The encoding
portion of the AE focuses on detecting crucial features in the input data
and encoding them into a condensed representation. This process of
dimensionality reduction ideally encodes the most significant features
which aid the subsequent classification layer.

3 RELATEDWORK
With the increasing popularity of DL, numerous applications of mal-
ware detection and classification using DL have been proposed. These
can usually be categorized as employing either a payload-based, or
flow-based approach to the problem. Historically, payload-based ap-
proaches to any kind of traffic classification problem faced difficulty
when handling encrypted traffic. DL might offer a solution to this, as
it is posited that DL algorithms are capable of finding meaningful pat-
terns within the encrypted payloads. The other approach is to use flow
statistics of traffic - access to which is not affected by encryption. Flow-
based approaches benefit from a comparatively easier pre-processing
stage [28]. Importantly, it should be acknowledged that it is not a case
of one or the other, and that these approaches can complement each
other.

Piskozub et al. [18] propose a multi-phased system to detect mal-
ware, classify it into malware type, and further into malware family
using bi-directional network flows. The network flows are pruned so
as to remove the features relating to IP addresses and port numbers -
this is done to prevent the models from learning from features from
the specific traffic capture, rather than the behaviour of malware. Their
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implementation used an AE to create a latent representation of the
network flow. This encoding was then fed into a deep neural network
which performs a binary classification. The classified malicious traffic
was then fed into a type-classifier and family-classifier using the same
representation as the binary classifier [18]. The system was evaluated
with two approaches; initially a collection of ’clean’ datasets contain-
ing only malware from one specific family per dataset. This practice of
evaluation does not give useful insight into the system’s performance,
as the dataset is not representative of real-world traffic. Their second
evaluation used datasets containing a mix of malicious and benign
traffic; under a 1 : 1 split of benign and malicious network activity.
The binary classification phase attained an F1-score of ≈ 0.830 across
the five malware families sampled. For the same ratio of benign and
malicious traffic, the type-classifiers attained an aggregated F1-score
of ≈ 0.480. Finally, for the malware family classification, an aggregated
F1-score of ≈ 9.525. Significantly, the type and family classifiers for
worms, viruses, and ransomware performed well with F1-scores above
0.750, while trojans and adware consistently had F1-scores under 0.500
[18]. The paper further acknowledges that the dataset did not contain
a balanced representation of malware classes, and families for each
class. For instance, there were far more distinct trojan families relative
to ransomware, which makes the task of classifying the different trojan
families considerably more challenging.

Hadidi et al. [7] evaluate the effectiveness of different approaches
to botnet detection. Two of the approaches discussed are signature
based, which were not related to the contributions of this paper. The ap-
proaches of interest used Support-Vector Machines (SVM), K-Nearest
Neighbour (KNN), and Bayesian Networks (BN) to classifying botnet
traffic based of either payloads or network flows, using Detection
Rate (DR) and False-Positive Rate (FPR) as evaluation metrics. 2 3

Simulated network traffic was captured in a sandbox environment.
Non-encrypted traffic was used, so as to make their payload-classifier
able to handle the traffic captures. Notably, in the network flow pre-
processing phases, identifying features such as IP addresses and port
numbers were removed from the datasets [7]. In the majority of evalu-
ations, payload-based classifiers have been shown to be superior to
flow-based methods. Specifically, the payload-based models such as
KNN, SVM, and BN have recorded detection rates (DRs) of 1, 0.995,
and 0.938 respectively. In contrast, the flow-based models have posted
comparatively lower scores, with DRs of 0.968, 0.910, and 0.838. This
trend of better performance by payload-based classifiers is also evident
in terms of false positive rates (FPRs). In particular, the payload-based
KNN and SVM have an excellent FPR of 0, and BN has a rate of 0.112.
However, the flow-based methods have reported higher FPRs of 0.035,
0.073, and 0.09 respectively.

Yeo et al. [28] evaluate four different ML architectures (Random
Forest, CNN, MLP, and SVM) to be used as binary classifiers for botnet
detection. The models were trained on bi-directional network flows
extracted from PCAPs in the CTU-13 dataset - a dataset containing
botnet traffic from 7 different families. Typical measurements of accu-
racy, precision and recall were used as evaluation metrics, while the
performance of a classifier was evaluated w.r.t an individual botnet
family. The performance trend of the four algorithms was consistent
across the botnet families: RF performed the best with accuracy, pre-
cision, and recall above .93. The CNN maintained results above 0.85
across all metrics for every botnet family, while the MLP and SVM
were as low as 0.55.

2Detection Rate is identical to Recall
3DR and FPR defined as 𝑇𝑃

𝑇𝑃+𝐹𝑁 , 𝐹𝑃
𝐹𝑃+𝑇𝑁

, respectively.

Pektas & Acarman [17] proposed using a deep neural network
(DNN) as a binary classifier for botnet detection. They employed the
CTU-13 dataset for botnet captures, which was also used in Yeo et al.
[28]. To process the data, they constructed a graph representation of
the network captures where nodes represent connected hosts. This
approach allowed them to extract statistical information about net-
work flows. Alongside source and destination IP addresses and port
numbers, they computed five statistical metrics for each flow: mean,
median, maximum, minimum, standard deviation. These metrics were
applied to the duration, byte size, number of packets and periodicity of
each flow. For evaluation, they focused on accuracy, precision, recall,
and the F1-score. Initial experimentation assessed the performance of
various neural network architectures: three models with two hidden
layers sized at (100, 100), (500, 500), and (1000, 1000), and three models
with three hidden layers sized at (100, 100, 100), (500, 500, 500), and
(1000, 1000, 1000). Interestingly, increased model complexity did not
guarantee better performance. The top-performing model, with an
F1-score of 0.991, was the two-layer model sized at (100, 100). Further
experimentation aimed to asses how excluding certain features from
the flows would impact performance; trials were run where one of the
five statistic features were removed (e.g. all the ’median’ features were
removed). The strongest decreases in performance occurred with the
removal of the ’standard’ and ’maximum’ features from flows, indicat-
ing that these are likely more important features for the classification
task.

Deep Packet, an approach proposed by Lotfollahi et al. [11], is a
system which incorporates both feature extraction and classification
stages. This approach is not directly related to malware detection
or classification, and instead aims to identify, from encrypted traffic,
major classes (e.g., P2P traffic), as well as application identification
(e.g., Skype). While this is a significant divergence from the aims of
our paper, the approach to solving their problem using DL has strong
parallels to ours. They propose a five-layered Stacked Auto Encoder
(SAE) connected to a softmax layer, and 1D-CNN as classifiers made
up of two convolutional layers and a softmax layer [11]. Following
convention, Precision, Recall and F1-score were the chosen evaluation
metrics. For the task of classification of traffic into major-classes, the
1D-CNN performed the best with a weighted F1-score of 0.930 across
all traffic types, relative to the 0.920 achieved by the SAE. The 1D-CNN
outperformed the SAE at identifying traffic application type by a more
significant margin, with F1-scores of 0.980 and 0.950, respectively.

Marín et al. [12] flow-based and packet-based approaches to detect
(a binary classification) and further classify (a multiclass classifica-
tion) botnet traffic. These approaches implement a 1D CNN which
is connected to an LSTM. For the binary classification task, the flow-
based approach is the best model by a significant margin, with an
accuracy of 0.986, compared to the packet-based model’s 0.776. They
note the flow-based model is able to achieve this accuracy with a FPR
of ≈ 0.025. For the multiclass classification, they were unable to use a
flow-based approach due to limitations relating to their dataset. Bear-
ing this in mind, their packet-based model, which aimed to classify
traffic into classes of Benign, Neris, Rbot, and Virut, attained accura-
cies of 0.878, 0.635, 0.999, and 0.547 for each respective class, with an
overall accuracy of 0.765.

4 DATASETS AND PREPROCESSING
Detection and classification of botnet traffic using DL algorithms is
a task which lends itself towards a supervised learning approach. Su-
pervised learning is a process which requires the use of high quality,
labelled datasets with sufficient samples for the training and evaluation
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process - the existence of such datasets is rare [26].

Network traffic is typically captured through programs like Wire-
Shark, where the information is stored in PCAP files. For the task at
hand, network flows, and ideally bidirectional network flows, are ex-
tracted from these PCAP files, and preprocessed into suitable training
data. We developed a preprocessing pipeline which received traffic
captures in the form of PCAP files as input, and after a series of steps,
outputted datasets in the form of .csv files. Information concerning
the original source of the dataset is discussed in 4.1, after which 4.2
describes the preprocessing steps taken in the pipeline.

4.1 Dataset
The Stratosphere Research Laboratory host an online repository 4 of
malicious and normal network captures. Specifically, they have created
the CTU-13 dataset, which contains network captures of real traffic
from seven distinct botnet families [5]. Internally, the dataset is made
up of thirteen captures; each capture containing the malware binary,
extracted network flows, and a PCAP file containing only botnet traffic
from that scenario’s capture (these PCAP files have had their normal
and background traffic removed due to privacy considerations) [20].

The bidirectional network flows provided by the CTU-13 dataset,
which were extracted using the open source tool, openArgus, offer
comparatively limited information, relative to what could be extracted
when using CICFlowMeter [8]. 5 Consequently, only the PCAP files
containing botnet traffic were used from this dataset. These were then
supplemented with the Stratosphere Research Laboratory’s repository
of normal captures, which are captures of network activity which imi-
tate a typical user’s activity on a network, and are restricted to contain
only benign network activity. The inclusion of benign traffic was nec-
essary in order to facilitate the measurement of True Negatives, and
False Positives, as well as encourage models to be able to generalise to
a real-world environment [21].

Captures 10 and 11 were omitted from the CTU-13 collection, as
they were instances of a malware family which had sufficient represen-
tation from the remaining scenarios. The resultant eleven scenarios
were supplemented with five ’normal’ captures.

For the binary classification process, botnet families Murlo and NSIS-
ay were completely excluded from the training and testing sets. This
was to enable the creation of an additional testing set, hereafter referred
to as the ‘proto zero-day’ set, which contained botnet families which
to which the model had not been exposed. Unlike traditional test sets,
which present models with unseen instances of known botnet families,
our set introduces entirely new categories. This additional measure is
analogous to concept of zero-day attacks, which are malware attacks
which have never appeared before [30]. While measuring a model’s
exact ability to detect zero-day attacks would be impossible, we argue
that this approach reasonable indication of the model’s performance
when encountering previously unseen attacks.

4.2 The Pipeline
Illustrated in Figure 1, the preprocessing pipeline begins with a col-
lection of PCAP files representing traffic captures. These were the
eleven botnet captures and five normal captures. Individually, each
PCAP represents a capture of either entirely normal traffic, or a single
botnet family [5]. The bi-directional network flows were extracted
using CICFlowMeter [8]. The extracted flows from each PCAP file
would be stored in a corresponding .csv file.

4The repositories can be found at: www.stratosphereips.org/datasets-overview
5openArgus can be found at: https://openargus.org

Figure 1: Illustration of the preprocessing pipeline, showing the divergence
in processing steps for the binary and multiclass classification datasets

4.2.1 Flow Extraction and Labelling

An essential part of the preprocessing was to assign accurate labels to
our data. The CTU-13 dataset includes labelled bi-directional network
flows for each scenario, extracted with the openArgus. However, these
flow are not as detailed as flows extracted using an alternative tool:
CICFlowMeter [8]. A consequence is that flows extracted using CI-
CFlowMeter needed to be labelled manually. The nature of the sourced
PCAP files was that they contained either entirely malicious or entirely
benign traffic [20]. As such, the labelling process was straightforward
to implement: the labels corresponding to the flows generated from
the previous stage could be identified by knowing which PCAP file the
flows originated from - which was simple to do, given that each PCAP
file would produce a single .csv of its extracted flows. The labelling
process was automated through a python script, FlowLabeller.py.

For the binary classification dataset, the data was either labelled
as 0 indicating benign, or 1 meaning malicious. For the multi-class
classification, benign traffic was labelled 0, and the malware classes
were labelled from 1-7.

4.2.2 Feature Selection

The bidirectional flows are one-dimensional vectors, made up of 82 fea-
tures. Each feature is a specific measurement of how the data behaves
in the flow, from which patterns can be learned during the training
process. For example, there is a feature (Total Fwd Pkt) which provides
the total number of forward flowing packets in the bi-directional flow.6
However, we recognised that allowing certain features to persist in the
dataset could potentially be detrimental to the models’ classification
performance.

Features relating to IP addresses (Src IP, Dst IP), and port numbers
(Src Port, Dst Port) were removed. The reasons for this were two-fold:
dynamic IP address, port-obfuscation and IP spoofing are techniques
which make relying on these features for classification a poor idea
[7, 18]. Additionally, the models should be able to generalise to unseen
data as best as possible. The inclusion of features such as IP addresses
and port numbers in the training set is antithetical to this goal, since
they are not intrinsic to the identity of the malicious traffic. The ’Flow
ID’, ’Protocol’, and ’Timestamp’ features were also removed for this
reason. The remaining features are harder to spoof, and associated
with the actual behaviour of the botnet malware [18].

The result being that each bi-directional flow is represented as a
one-dimensional vector with 75 features. We then create two addi-
tional datasets which contained a random sample of 50% and 30% of
the features (37 and 22 features, respectively). This would facilitate

6The exhaustive list of features is found in 9.4
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investigation into how reducing the feature space might lower memory
requirements and inference time, and what effect it would have on
classification performance.7

4.2.3 Balancing

The datasets for the binary classification task were balanced to have
an even distribution of benign and malicious samples. The malicious
samples were made up of Neris, Rbot, Virut, Menti, and Sogou bot-
net families. Murlo and NSIS.ay families were excluded as they were
used for the creation of the proto zero-day dataset. The approximately
110, 000 malicious flows were down-sampled to 59, 000, which was the
number of benign samples in the dataset; the datasets were split into
training, validation, and testing sets in a 72%, 8%, and 20% ratio.

Table 1: Botnet Families and Network Flows from the CTU-13 Dataset with
additional Benign Traffic

Family #Flows Family #Flows

Neris 190, 028 Sogou 72
Rbot 46, 796 dMurlo 11, 537
Virut 85, 779 NSIS.ay 7, 645
Menti 4, 810 Benign 56, 665

To balance the classes in the datasets for multiclass classification,
we ensured that included classes would have a sufficient number of
respective samples, so as to allow the model to train well on that
class. Empirically, we determined that a class required a minimum of
30, 000 samples in order for the classifiers to perform effectively. A
consequence of this being that botnet families Sogou, Menti, NSIS.ay,
and Murlo were removed from the training set. As indicated in Table 1,
these families did not have enough samples for practical up-sampling.
The resultant dataset included traffic labelled as benign, Rbot, Virut,
or Neris. These classes were then down-sampled to consist of 45000
samples each; the datasets were split into training, validation, and
testing sets in a 72%, 8%, and 20% ratio.

5 IMPLEMENTATION
In this section we discuss the how decisions were made concerning
the architecture and hyperparameters of each binary and multiclass
classification model. As there was overlap in reasoning for the binary
and multiclass classification tasks, discussion of architectures for each
respective task were grouped.

5.1 Hyperparameter Tuning
The performance of a DLmodel is heavily influenced by decisionsmade
regarding hyperparameters. Discovering optimal hyperparameters is a
process which typically involves references to existing literature, and
exploring iterations of training slightly different models and evaluat-
ing which yield better results (i.e., Grid-Search). This process is both
computationally expensive and time consuming. We adopt an alternate
approach using an extension of Keras Tuner called Hyperband [9, 13].

Hyperband presents an efficient means of optimising both hyperpa-
rameters and general network topology. Starting from a predefined set
of options including ranges of layer sizes, activation functions, learning
rates, and dropout rate, Hyperband adopts an early-stopping strategy
to identify promising combinations of hyperparameters. These are
trained for a small number epochs to assess their performance. The
top-performing configurations are kept for further training, while the

7The specific features present in these datasets are described in tables 8, 7 and 6 in the
Appendix

rest are discarded. This process is iterated until the algorithm con-
verges on a network topology and set of hyperparameters that yield
near-optimal performance [9].

5.2 Architectures
Expanding on the discussion of the contributions of this paper, our aim
is to evaluate five different DL models: an MLP, shallow CNN, deep
CNN, AE, and AE+CNN. The split in our aims, between detecting and
classifying botnet traffic, requires that for each model we train a binary
classifier (for botnet detection) and a multiclass classifier (for botnet
classification). The following is an exposition of the topology and
hyperparameters of each model - arrived at through implementation
of the Hyperband process discussed in 5.1. A tabulated representation
of this information can be found in 9.5 in the Appendix.

5.2.1 Multilayer Perceptron

The MLP is, by design, our simplest model. While this model was
not implemented under the hope that it would be the most effective
model, it is useful in the sense that it’s simplicity enables it to act as
an indication of how difficult the classification problems are.

The MLP binary classifier has an input layer, connected to a single
densely connected layer with 33 neurons using the Tanh activation
function. The output of this layer is fed into another densely connected
layer with a Sigmoid activation function for classification. The archi-
tecture for the multiclass classification model is markedly similar, the
difference being an increase in the size of the hidden layer, with 128
neurons, and a classification layer which uses a Softmax function.

5.2.2 Convolutional Neural Networks

For both classification tasks we introduced two CNN architectures
inspired by the implementations of 1D-CNNs as per [25, 29]. Each
task has a respective shallow CNN (CNN v1), and deeper CNN (CNN
v2). Across all models, we adopted the Adam optimiser during the
training phase, which has had widespread success in related literature
[11, 26, 29]. Furthermore, all networks shared a common filter size of
3 × 1, with a stride of 1. Following these convolutional layers, Max-
Pooling was employed as a down-sampling technique to reduce spatial
dimensions and retain critical features of the input.

With respect to the binary classifiers, CNN v1 had two 1D convolu-
tional layers made up of 128 and 416 filters, respectively. The output
from the final MaxPooling layer was flattened, and fed into a densely
connected layer with 352 neurons. A final Sigmoid layer was used
for classification. CNN v2 implemented three 1D convolutional layers,
with 40, 136, and 232 filters. After the final MaxPooling layer, a dropout
of 0.5 was introduced to combat overfitting. The result was flattened,
and channelled into a dense layer of 104 neurons, followed by another
dense layer of 40 neurons before a final Sigmoid layer for classification.
Aside from the classification layer, all applicable layers made use of
the Rectified Linear Unit (ReLU) activation function, which introduced
non-linearity to the model - a decision determined through the hyper-
parameter tuning process.

For multiclass classifiers, CNN v1 had two 1D convolutional layers
made up of 232 filters each; after the second MaxPooling layer, the
output was flattened and inputted to densely connected layer of 72
neurons, before a final Softmax classification layer. CNN v2 imple-
mented three 1D convolutional layers, made up of 232, 104, and 40
filters, respectively. After the third MaxPooling layer we introduced
a 0.5 dropout to the model for overfitting. The output was then flat-
tened and inputted to a densely connected layer of 296 neurons, after
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which another dropout layer of 0.25 was introduced. Twomore densely
connected layers sized 456, and 168 were implemented before the Soft-
max classification layer. The dense and convolutional layers used the
Tanh activation function - the decision to implement Tanh was made
through empirical findings, through the hyperparamter tuning process.

5.2.3 Autoencoders

The architecture of the AEs we implemented for the binary classifi-
cation and multiclass classification problems were very similar, with
differences appearing in the size of the layers. Drawing inspiration
from [11], each AE had five fully connected hidden layers, and a clas-
sification layer (Sigmoid or Softmax). The sizes of these layers for
the binary classifier were [232, 72, 40, 104, 232], whereas the multiclass
classifier has layers sized [168, 104, 104, 40, 104]. Both the binary and
multiclass classifiers implement a Tanh activation function in each
layer.

5.2.4 AE+CNN

The AE + CNN is an ensemble of the previously implemented AE and
CNN v1. For the binary classification task, five densely connected lay-
ers were used for the encoding process, which had 136, 136, 72, 104, 136
neurons, respectively. The output from the fifth layer was reshaped
in order to be suitable input for the CNN. Subsequently, two one-
dimensional convolutional layers were implemented with 64 and 32
filters, respectively. Each convolutional layer was followed by a Max-
Pooling layer, where the final MaxPooling layer was flattened and
channelled into a densely connected layer with 8 neurons, connected
to the final classification layer which used the Sigmoid activation func-
tion. All of the applicable layers used a ReLU activation function, and
the Adam optimiser - for the same reasons as before.

The multiclass AE+CNN implemented a similar architecture, with
five densely connected encoding layers with 136, 104, 72, 40, 104 neu-
rons, respectively. The same reshaping and subsequent convolutional
and MaxPooling layers were included, with 32 and 96 neurons in
each respective convolutional layer. These layers, where applicable,
implemented a Tanh activation function, as opposed to the binary
classification model’s ReLU. A final softmax layer was used for classi-
fication.

6 EXPERIMENT DESIGN
The following section breaks down the process of experimentation
addressing the aims of this work. In recognition of the split in problem
type, the discussion is bifurcated into one section concerned with
botnet detection, and another which addresses botnet classification.
The nature of some of the experiments - measuring memory usage,
and inference time - is such that it is difficult to be certain if results
accurately represent real performance. This is mostly unavoidable, as
factors like background processes, temperatures, memory release are
beyond our control. In an attempt tomitigate these factors, experiments
were performed on the same M2 Macbook Air with 16Gb of memory,
with all unnecessary processes terminated.

6.1 Evaluation Metrics
To evaluate the performance of a model, we use accuracy, FPR, FNR,
mean inference time (MIT), and mean memory usage (MMU). While
accuracy is a standard metric w.r.t. determining the effectiveness of a
classifier, much of the related work prefers F1-score [10, 11, 18]. The
advantage F1-score offers is that it provides a fairer representation
of a model’s performance in the case of unbalanced datasets [27]. In
our case, measures were undertaken to ensure a balanced training and

testing set; consequently, accuracy was preferred to F1-score.

FPR quantifies the fraction of benign results incorrectly identified as
malicious by the model [7]. Conversely, FNR measures the proportion
of actual threats misclassified as benign. In the context of intrusion
detection systems, both metrics are particularly important. High FNRs
undermine the essential purpose of an IDS - to detect threats. On the
other hand, an elevated FPR can erode trust in the system. If users are
frequently alerted to false threats, they may begin to ignore genuine
threats [7]. These metrics are defined as:

Accuracy =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 +𝑇𝑁
FPR =

𝐹𝑃

𝐹𝑃 +𝑇𝑁
FNR =

𝐹𝑁

𝐹𝑃 + 𝐹𝑁

Where 𝑇𝑃 refers to true positives, 𝑇𝑁 to true negatives, 𝐹𝑃 to false
positives, and 𝐹𝑁 to false negatives.

MIT and MMU provide the mean time for a model to make an infer-
ence, and memory required to make 100 inferences, respectively. These
measurements require multiple iterations of measurements for each
model, in order to extract the mean. An alternate approach of taking
the worst-case performance of these measurements was considered.
The advantage of a worst-case measurement is that it enables us to
infer the hardware specifications needed to implement the model with-
out fear of failure, providing an upper bound on the memory usage
or inference time. However, we recognise that there are significant
difficulties in ascertaining accurate measurements of memory usage or
CPU time, (see 6.2.2 for further discussion of these challenges). Conse-
quently, we can be less confident in analyses like the worst-case, which
look at a specific value: it is not unlikely that a recorded worst-case
measurement was caused by a uncontrollable factor (such as memory
not being freed before the recorded activity). On the other hand, the
mean of a collection of measurements is more tolerant to these types
of errors due to their larger pool of data. The aim is that the trends
in model performance, in terms of MIT and MMU, persist through
possible erroneous measurements.

6.2 Binary Classification Task
6.2.1 Comparing the Classification Performance of Models

Evaluated on Normal and Proto Zero-Day Test Sets

This experiment establishes a baseline evaluation of how MLP, CNN
v1, CNN v2, AE, and AE+CNN perform, in terms of classification ac-
curacy, FPR, and FNR on the conventional testing set. Subsequently,
these models are evaluated on the additional testing set, as discussed
in 4.1 and 4.2.3 to ascertain their ability to generalise to unseen botnet
families. Accuracy is determined through the use of the Keras frame-
work’s ‘evaluate’ function. For calculation of FPR and FNR, a model
makes predictions on a testing set which are compared with the set
of ground truths to determine the FP, FN, TP, TN values used in the
formulas outlined in 6.1.

6.2.2 Evaluating the Effect of a Reduced Input Feature Space
on Computational and Classification Performance

While DL has largely alleviated the necessity for feature engineering,
as is present in machine learning, larger feature spaces typically incur a
greater computational cost [11, 19]. We aim to explore the relationship
between computational and classification performance of the five DL
models when trained on inputs of 100%, 50%, and 30% of the feature
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space.

We define computational performance as the memory usage (MMU)
and inference time (MIT) of a model. Determining accurate values for
these metrics presents significant difficulties: during the execution of
a program, there are invariably other processes running concurrently.
Furthermore, memory management of an operating system is largely
beyond our control. Empirically, we found that a when a program
iterated over each model, measuring memory use and inference time,
there was a consistent increase in memory consumption with each
subsequent iteration, irrespective of model complexity. While the spe-
cific cause of this was not thoroughly investigated, it presented a risk
that models evaluated by the program earlier would have have an
advantage over those evaluated later.

To minimize the potential impact these factors may introduce, we
elected to measure the inference time and memory utilization across
batches (𝑏 = 10) of the test dataset, each batch comprising of a fixed
number of samples (𝑛 = 100). In this revised approach, the system was
rebooted after each subsequent evaluation of a batch. Memory use
was measured using the ‘Memory Profiler’8 python package, which
provides a list of memory usage taken at snapshots during the pro-
gram’s execution. We record the model and memory usage for each
batch, extracting the mean usage from these results. Inference time
was determined using the ‘timeit’ package from Python’s Standard
Template Library [23]. We measure and record the time taken for a
model to make predictions over a batch, extracting the mean from
from these records. The experiment requires that we implement this
procedure three times for each model, using training and testing sets
containing 100%, 50%, and 30% of the available features.

6.3 Multiclass Classification Task
6.3.1 Evaluate the Classification Accuracy of each model over-

all, and for each Botnet Family

This experiment evaluates theMLP, CNNv1, CNNv2, AE, andAE+CNN
models to determine their overall accuracy scores, as well as their accu-
racy scores for each specific botnet family. Metrics like FPRs and FNRs
are not applicable to multiclass classification problems, as they require
a binary relation. It is still useful, however, to determine some sense
of how each model performs relative to each class in the multiclass
classification. We evaluate each model on the normal testing set only,
as the concept of the proto zero-day testing set is incongruous with
multiclass classification. From this evaluation we are able to determine
a general accuracy for each model, as well as the accuracy of each
model respective to the available classes. Reiterating the discussion
from 6.1, we use accuracy because we have ensured that each class
has an equal representation of samples, at 8000. For each model, we
make classifications using the Keras Library’s ‘predict()’ method, and
store the results in a confusion matrix.

6.3.2 Evaluating the Effect of a Reduced Input Feature Space
on Computational and Classification Performance

We evaluate how datasets with reduced feature spaces influence the
computational and classification performance of models. More specifi-
cally, five models are trained on three datasets containing a random
sample of 100%, 50%, and 30% of the total features - this translates to
datasets with 74, 37, and 22 features, respectively. We then observe the
effect that a reduced feature space might have on a single, or group of
models’ computational and classification performance. We regard the
computational performance to be the MIT and MMU of a model, while

8Memory Profiler can be accessed at https://github.com/pythonprofilers/memory_profiler

classification performance is largely defined as a model’s accuracy
across all classes, with a secondary focus on the portion incorrectly
classified traffic. This latter focus enables us to determine which mod-
els might struggle to classify specific families, or if certain families are
poorly classified by all models.

The experiment procedure echoes what was outlined in 6.2.2: to
mitigate the challenges we face when measuring memory usage and in-
ference time we determine the MIT and MMU by taking measurements
over a series batches (𝑏 = 10) containing a fixed number of samples
(𝑛 = 100), between each measurement the system is rebooted. From
these measurements we determine the mean inference time (MIT) and
mean memory usage (MMU).

7 RESULTS AND DISCUSSION
In the following we present and discuss the findings from the exper-
iments outline in 6. As with the description of experimental design,
there is a natural bifurcation of results into those which involve the
binary classification task and multiclass classification task. We be-
gin with the discussion of binary classifiers, followed by multiclass
classification results.

7.1 Binary Classifiers for Botnet Detection
7.1.1 Performance on Normal and Proto Zero-Day Test Sets

Figure 2 displays the accuracy, FPR, and FNR of the MLP, CNN v1,
CNN v2, AE, and AE+CNN when evaluated on the normal and proto
zero-day testing sets. Performance on the normal testing set provides
an indication of a model’s ability to generalise to unseen traffic that
belongs to botnet families which were present in the training set. On
the other hand, results relating to the proto zero-day testing set relates
to a model’s ability to classify traffic from botnet families which were
entirely excluded from the training set.

Figure 2: sub-Figures A, B, and C, respectively, show Accuracy, False-Positive
Rates, and False-Negative Rates of each model when evaluated on the normal
and proto zero-day testing sets.

All models achieved relatively high (≥ 0.979) accuracy scores when
evaluated on the normal testing set. the MLP, our least complex model
attained a score of 0.986, indicating the the task of botnet detection
from known families is fairly simple. The CNN v2 attained the highest
classification accuracy of 0.993, while the AE was the lowest with a
score of 0.979. We suggest an explanation for the poor performance of
the models which implement an autoencoder (the AE+CNN attained
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the second lowest accuracy) is that latent vectors created by the en-
coding phase fail to capture some distinguishing features of the input
data. When comparing best and worst models - CNN v2 and AE -
there is an absolute improvement by the CNN v2 of 0.014. While this
improvement is small, we calculate that the error rate of the CNN v2,
at 0.007, represents a 0.667 reduction in errors relative to the error rate
of the AE, at 0.021.9

In order to recognise the significance of this reduction, we need to
contextualise the problem. Networks are often required to handle a
large volume of traffic; for example, a network on a college campus
with 10, 000 users may see a typical transfer of 7TB of data every 24
hour period [24]. For an intrusion detection system monitoring this
network, a relative reduction in error rate of 0.667 could entail thou-
sands of fewer errors.

These errors can be broken down into two categories: false negatives
and false positives. From this, we work out the FPR and FNR for each
model. When FPR was evaluated on the normal testing set, the CNN v2,
AE+CNN, and MLP were the best performers with FPRs of 0.008. The
CNN v2 attained an FPR of 0.016. The poorer performance of the CNN
v2 in comparison to the CNN v1 might be explained by the increased
complexity of CNN v2, with the additional convolutional layer and
fully connected layers causing overfitting. The worst performer w.r.t
FPR was once again the AE, with a measure of 0.030. It is difficult
to suggest an acceptable tolerance for FPR and FNR: factors around
the type of information being secured, the size of the organisation,
and general security posture may all influence what might be deemed
acceptable. However, the FPRs achieved by the CNN v2, AE+CNN, and
MLP, with respective accuracies of 0.993, 0.983, and 0.986, present an
improvement on existing work [12, 28].

Evaluation on the proto zero-day testing set showed a decline in
performance in terms of accuracy, FPR, and FNR across all models.
The best performing model w.r.t. classification performance was the
CNN v2, which achieved an accuracy of 0.842, FPR of 0.038, and FNR
of 0.255. The same model evaluated on the normal testing set achieved
scores of 0.990, 0.016, and 0.004 for each respective metric. The decline
in classification performance aligns with our understanding that dis-
tinct botnet families are likely to exhibit, at least partially, different
behaviour. It is this difference which causes the models to struggle
when classifying traffic belonging to families entirely excluded from
the training set. However, the model’s performance on the proto zero-
day testing set remains a significant improvement on guessing. We
suggest that an explanation for this improvement rests on the notion
that while there are certainly some differences, distinct botnet families
must express certain shared behaviour that is not present in benign
traffic. This would be behaviour intrinsic to all botnet families, as
opposed to behaviour distinct to individual families. 10 This shared
behaviour amongst botnet families is what a model would recognise
in the proto zero-day testing set.

There was also a more pronounced degree of variability in classifi-
cation performance of the five models when evaluated on the proto
zero-day testing set, relative to the evaluation based on the normal
testing set. For instance, the mean accuracy, over all five models, when
evaluated on the proto zero-day testing set was 0.783 with a standard
deviation of 0.047. In contrast, when evaluated on the normal testing
set, we determined a standard deviation of 0.005 around a mean of
0.986. This variability indicates that there is a fairly substantial differ-
ence between each models’ ability to learn the more complex, intrinsic

9Formulas and calculations provided in Appendix
10We use ’all’ here, referring to all families sampled. There may of course be exceptions

botnet behaviour which enable better detection of unknown botnet
families.

From these two ideas - that good performance on the proto zero-
day testing set requires learning more complex behaviour patterns
intrinsic to all botnets, and that there is greater variability in model’s
classification performance when evaluated on the proto zero-day test-
ing set - we make the claim that certain models, specifically models
which implement convolutional layers, are significantly more capable
of learning these more complex patterns. We ground this claim in
the observation that the CNN v1, CNN v2, and AE+CNN achieved
accuracies on the proto zero-day set of 0.842, 0.793, and 0.810, respec-
tively, whereas, the AE and MLP achieved accuracies of 0.732 and
0.740. A potential explanation for the efficacy of convolutional layers
towards learning these behaviour patterns is that they are particularly
good at learning patterns which emerge from the relationship between
closely related features - which may represent the more intrinsic be-
haviour general to all botnets. The AE and MLP are able to achieve
high (> 0.979) accuracies on the known botnet families because they
can learn the defining features of each individual family, as opposed to
learning some underlying pattern seen in all families. This is sufficient
for binary classification on known families, but generalises poorly to
classification of unknown families, because these ’defining’ features
may not be present.

7.1.2 Effect of a Reduced Input Feature Space on Computa-
tional and Classification Performance

Sub-Figures 3C and 3D show the MIT and MMU for each model when
using 30%, 50%, and 100% of the available input feature space. From
Figure 3D, we observe a small but clear trend whereby increasing the
feature space of a model’s input has an associated increase in the mem-
ory usage of that model. This result aligns with the position outlined
by Sarker [19], that the absence of feature engineering in DL may
increase computational requirements of DL models. While the trend
is consistent across all models, the proportional increase in memory
is small; going from feature spaces of 30% to 100% (that is, 22 to 74
features), we observe a mean increase in MMU of ≈ 10%. In the most
extreme case, CNN v1, the jump from 30% to 100% of features saw an
increase in MMU of ≈ 90 MB, or 20.726%. For CNNs, an explanation
for the relatively small increase to MMU when given larger feature
spaces is likely found in their use of sparsely connected layers and
parameter sharing, which reduce the number of trainable parameters
in a model.

From sub-Figure 3D, we observe that the CNN v1 sees the largest in-
crease in memory utilisation when evaluated on larger feature spaces.
However, larger feature spaces in this model also result an improve-
ment to classification performance. From sub-Figure 3A, the normal
accuracy improves from 0.968 to 0.993, sub-Figure 3E shows that the
FPR improves from a rate of 0.027 to 0.008, and FNR (sub-Figure 3F)
improves from a rate of 0.037 to 0.006. These improvements to classifi-
cation performance when using larger feature spaces are significant.
Moreover, they are, to lesser extents, observable in the four other mod-
els. Consequently, we make the claim that the increase in memory
utilisation associated with larger feature spaces is justified by the im-
provements made to classification performance, given the informal
notion that it is easier to buy more memory than it is to attain higher
classification accuracy.

This argument is made clearer when we evaluate the impact of a
reduced feature space on the proto zero-day testing set. To this end,
sub-Figure 3B shows that the best performing model using 100% of
features, in terms of accuracy, was the CNN v2 with a score of 0.842.
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Figure 3: Figures illustrating model performance on testing sets comprised
of 30% (22 features), 50% (37 features), 100% (74 features) of total features.
The figures show Normal Accuracy (A), Proto Zero-Day Accuracy (B), Mean
Inference Time (C), Mean Memory Usage (D), False Positive Rate (E), False
Negative Rate (F), False Positive Rate on Zero-Day set (G), and False Negative
Rate on Zero-Day set (H).

When this model was trained and tested on the set of 30% of features,
the accuracy declined to 0.751. Furthermore, sub-Figure 3G shows
that the FPR increased from 0.038 to 0.076, and similarly that the FNR
declined from 0.255 to 0.389, evident in sub-Figure 3H. We suggest
that an explanation for the more significant decline in classification
performance when evaluated on the proto zero-day set compared to
the normal testing set is that detection of botnet traffic from a range
of known botnet families is a fairly simple task, enabling (relatively)
high accuracies to be obtained with fewer features. On the other hand,
echoing the discussion in 7.1.1, detection of botnet traffic from a range
of unknown botnet families requires models to learn complex patterns
shared by all botnets, which the datasets with reduced feature spaces
are not rich enough to support.

7.2 Multiclass Classifiers for Botnet Classification
7.2.1 Classification Accuracies of each model overall, and for

each Botnet Family

The classification performance of each of the five multiclass classi-
fiers is shown in Figure 4; each model has a corresponding confusion
matrix which displays its predictions, and enables evaluation of how
the model performs w.r.t. each botnet family. Sub-Figure 4F offers a
holistic representation of all the model’s performance on each respec-
tive family. Evident in Figure 4F, the overall accuracies of the models
when classifying traffic into respective families of Benign, Neris, Rbot,
and Virut were expectedly lower than the binary classification task

Figure 4: Sub-Figures A to E show the respective confusion matrices for
CNN v1, CNN v2, AE, AE+CNN, and MLP models, showing performance of
each model w.r.t. individual classes. Sub-Figure F shows the overall accuracy,
false-positive rate, and false negative rate of each model w.r.t. each class.

model accuracies, with a mean accuracy score across all classes of
0.850, compared to 0.986. The best performance was observed in the
CNN v1, which achieved an average accuracy across all families of
0.907. We observed that there was again a marked improvement, in
terms of overall classification accuracy, seen in the models which used
convolutional layers, with the exception of the AE+CNN model. CNNs
are known for their efficacy when learning hierarchical relationships
between features, which is a useful way of reasoning about the neces-
sary and sufficient conditions when making a classification [6]. In the
context of this classification task, this ability may be an explanation
for their performance, as they are better able to combine the surface
level and more complex features of network flows in order to learn
more detailed patterns from the data.

As with the binary classification task, the shallow CNN (v1) out-
performs the deep CNN (v2) by a small margin, with accuracies of
0.907 and 0.898, respectively. This is a percentage point increase of
0.009, which is fairly negligible. These findings allow us to make the
claim that whichever patterns are learned by the CNNs are able to be
learned with a shallow network, and that additional complexity (and
associated dropout layers to combat overfitting) is unnecessary.

In the discussion from 7.1.1, concerning binary classification accu-
racy on the proto zero-day set, we suggested that the models which
implemented convolutional layers (CNN v1, CNN v2, and AE+CNN)
performed better due to the ability of CNNs to learn complex under-
lying behaviour patterns present in all botnet families. With respect
to multiclass classification accuracy, CNN v1 and v2 are the best per-
formers with overall accuracies of 0.907 and 0.898, respectively; while
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the AE+CNN has substantially worse classification performance, with
an accuracy of 0.837. We have just proposed that a CNNs’ ability to
capture hierarchical relationships in data may be an explanation for
their effectiveness for this problem; consequently, we suggest that
an explanation for the relatively poor performance of the AE+CNN,
which should benefit from this property of the convolutional layers,
is that the encoding phase of the network reduces the complexity of
the data to a point where the subsequent CNN is unable to learn the
necessary hierarchical relationships, because they no longer ‘exist’ in
the encoded representation. We further suggest that the reason for this
is that the typical purpose of an autoencoder is to encode the input
into a lower-dimensionality representation, from which an approxi-
mation of the original input can be reconstructed. This process may
encourage the encoder to prioritise the more ‘visible’, surface-level
patterns as they would be the best way to approximate the input. The
consequence being that the encoder begins to act as a bottleneck - the
features which aid more complex pattern learning are not present in
the encoding, preventing a subsequent CNN from exploiting them.
When we compare the results of the AE+CNN to the AE, similar ac-
curacy rates are observed across the board, with overall accuracies of
0.837 and 0.836, respectively. This appears to reaffirm the notion of
the encoder acting as a bottleneck for further classification.

Marín et al. [12] implemented a multiclass classifier of a deep CNN
fed into an LSTM, trained on a dataset of Benign, Neris, Rbot, and
Virut classes. Our best performing model, the CNN v1, showed an im-
provement on their CNN+LSTM, with an overall accuracy of 0.907 to
their 0.765. Apart from the model architecture, a significant difference
between our model and theirs is that our CNN v1 uses network flows
as data, while they use bytes from the packet payloads, which are en-
crypted. We suggest that the difference in classification performance is
caused by their model struggling to learn meaningful representations
from the encrypted data. In support of this notion we refer to their
binary classification experiments, where their payload-based classifier
obtained an accuracy of 0.650, a result significantly lower than their
flow-based classifier at 0.900, and our best performing binary classifier
at 0.979 [12].

Notably, the their CNN+LSTM struggled the most when classifying
instances of Neris and Virut families. Figures 4B and F quite clearly
show that this trend is observable across all models. Marín et al. suggest
that an explanation of this is a result of the similarity between the
Neris and Virut botnet families, causing models to misclassify one as
the other. The results in Figure 4 show that Virut samples are most
frequently misclassified as Neris, supporting this notion. However,
Neris samples are most frequently misclassified as Rbot, which may
indicate that there is some other cause for the models’ confusion.

7.2.2 Consequences of Reduced Feature Space on Computa-
tional and Multiclass Classification Performance

Figure 5A shows the accuracy of each model given the size of the
feature space. As the number of features is reduced we observe an
associated decline in classification accuracy. This aligns with the in-
tuition that more features enable a model to use the relationships
between features to learn more complex patterns, facilitating better
classification performance. The two CNNmodels show a more substan-
tial decline in accuracy when the features are reduced from 50% to 30%,
when compared to 100% reduced to 50%. In some sense, this is an unin-
tuitive result; the larger reduction in feature space is accompanied by a
smaller reduction in accuracy. An explanation for this lies in the notion
that the CNN’s success is a consequence of their ability to learn useful
patterns from relations between features. When the feature space is re-
duced from 100% to 50%, there remains a sufficient number of features

Figure 5: Sub-Figures A, B, and C show the respective accuracy, Mean Infer-
ence Time, and Mean Memory Usage when evaluated on datasets of varying
feature size.

to enable the models to learn these patterns. In the reduction from
50% to 30%, while fewer features are removed, the resultant dataset is
not detailed enough for CNN’s to learn useful information. However,
an alternate explanation of why the decline in accuracy is more pro-
nounced when going from 50% to 30% of feature space, as opposed to
100% to 50%, is that the process of reducing the feature space uses ran-
dom sampling to select features. This may have resulted in important
features being absent from the 30% dataset. To this end, the cause of
the decline might be a result of quality, rather than quantity of features.

We observe that the three models that employ a CNN appeared
to use more memory than the AE and MLP. We expect the MLP to
use the least memory, as it is the least complex model. However, the
CNN v1 has fewer trainable parameters than the AE, while using more
memory. We suggest that the cause of this, and a general explanation
for why CNNs seem to have the largest MMU, is that the CNN has to
store filters and their respective activation maps in memory, which
can become fairly expensive [6].

We find that in every model, there is an increase to MMU as the
feature space increases. This was an expected result, reaffirming the
position outlined in 7.1.2 that larger input feature spaces are associated
with an increase to a model’s MMU. However, we maintain that this
increase to MMU represents a relatively small improvement to com-
putational performance, and is often coupled with a fairly substantial
improvement in classification performance. For instance, when going
from 30% to 100% of features the MLP’s MMU performance declines,
with an increased utilisation of only ≈ 28MB; however, there is an
accompanied improvement to accuracy of 0.089..

The CNN v1, v2 and AE+CNN models have the three slowest infer-
ence times when evaluated on 100% of the feature space. This result
matches our expectations, as CNNs operate by executing a convolution
operation for each filter across all output elements of the preceding
layer [6]. This convolutional process is computationally intensive and
is not a requirement in the Autoencoder (AE) and Multilayer Percep-
tron (MLP) architectures. While these trends seemingly continued
as the feature space was reduced, we found no discernible relation
between the MIT and the size of the feature space.
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8 CONCLUSIONS
In this paper we evaluated the classification and computational per-
formance of DL models for botnet detection, and classification. We
further explored the effect reduced feature spaces have on their per-
formance. For our first research objective, we found that all models
achieved accuracies ≥ 0.979, FPRs ≤ 0.033, and FNRs ≤ 0.026, sug-
gesting that the classification problem was fairly simple. Classification
performance declined on the proto zero-day set overall, and clearly
showed that CNNs were more capable algorithms at detecting zero-day
traffic. We further observed a clear trend that larger feature spaces
where associated with a larger MMU, affirming our expectation that
feature selection might improve computational performance. However,
in reducing feature space we also observe a substantial decline in classi-
fication performance. We found no evidence of a trend between feature
space size and MIT; however, we acknowledge that there were serious
limitations to the accuracy of measuring MIT. With respect to the
second research objective, we found a fairly large differential between
the classification performance of models which used convolutional
layers and those that did not. We suggest that the efficacy of CNNs at
learning hierarchical relations between features is an explanation for
this. As with the binary classifiers, we observed a trend where larger
feature spaces were associated with slightly greater MMU. However,
the larger feature spaces resulted in substantially better classification
performance.

We suggest that the most significant observation from this work is
found in the discussion of classification performance of binary classi-
fiers on the proto zero-day set. In this area, we observed accuracies
high enough to act as a proof of concept, that patterns learned from
existing botnet families can be used for detection on unknown families,
while still leaving considerable room for improvement.
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9 APPENDIX
9.1 Binary Classification Results

Table 2: Results of Binary Classifiers on Default Test Set

Model Accuracy Precision Recall FPR FNR
100 50 30 100 50 30 100 50 30 100 50 30 100 50 30

CNN v1 0.990 0.972 0.966 0.990 0.972 0.966 0.990 0.972 0.966 0.016 0.030 0.032 0.004 0.026 0.036
CNN v2 0.993 0.983 0.968 0.993 0.983 0.968 0.993 0.983 0.968 0.008 0.021 0.027 0.006 0.012 0.037
AE 0.979 0.974 0.966 0.979 0.974 0.966 0.979 0.974 0.966 0.030 0.026 0.035 0.012 0.027 0.033
AE CNN 0.983 0.974 0.963 0.983 0.974 0.963 0.983 0.974 0.963 0.008 0.030 0.034 0.026 0.022 0.040
MLP 0.986 0.971 0.959 0.986 0.971 0.959 0.986 0.971 0.959 0.008 0.033 0.055 0.021 0.026 0.027

Table 3: Results of Binary Classifiers on Proto Zero-Day Test Set

Model Unseen Accuracy Unseen Precision Unseen Recall Unseen FPR Unseen FNR
100 50 30 100 50 30 100 50 30 100 50 30 100 50 30

CNN v1 0.793 0.653 0.480 0.904 0.777 0.671 0.700 0.736 0.116 0.092 0.448 0.071 0.300 0.264 0.884
CNN v2 0.842 0.714 0.751 0.960 0.777 0.909 0.745 0.677 0.611 0.038 0.240 0.076 0.255 0.323 0.389
AE 0.732 0.552 0.716 0.783 0.581 0.824 0.713 0.683 0.619 0.245 0.609 0.163 0.287 0.317 0.381
AE CNN 0.810 0.705 0.687 0.957 0.727 0.785 0.688 0.746 0.597 0.038 0.346 0.202 0.312 0.254 0.403
MLP 0.740 0.594 0.698 0.782 0.610 0.744 0.734 0.736 0.691 0.253 0.580 0.294 0.266 0.264 0.309

Table 4: Computational Performance of Binary Classifiers

Model Memory (MB) Inference Time
100 50 30 100 50 30

CNN v1 465.89 422.91 422.39 0.00032 0.00024 0.00027
CNN v2 526.16 443.78 435.83 0.00031 0.00026 0.00026
AE 457.02 428.02 420.16 0.00022 0.00022 0.00023
AE CNN 490.94 485.50 475.42 0.00026 0.00023 0.00033
MLP 446.05 422.70 416.67 0.00020 0.00020 0.00020

9.2 Multiclass Classification Results
Table 5: Classification and Computational Performance of Multiclass Classi-
fiers

Model Accuracy Memory (MB) Inference Time
100 50 30 100 50 30 100 50 30

CNN v1 0.907 0.881 0.819 465.96 434.63 425.77 0.00030 0.00031 0.00027
CNN v2 0.898 0.889 0.809 465.85 446.88 431.28 0.00029 0.00026 0.00025
AE 0.836 0.786 0.745 447.98 427.21 419.70 0.00024 0.00022 0.00022
AE CNN 0.836 0.807 0.755 492.95 478.88 458.87 0.00028 0.00030 0.00030
MLP 0.773 0.764 0.684 445.69 425.44 418.13 0.00023 0.00023 0.00022

12



Carr, L

9.3 Formulas

Accuracy =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 +𝑇𝑁
FPR =

𝐹𝑃

𝐹𝑃 +𝑇𝑁
FNR =

𝐹𝑁

𝐹𝑃 + 𝐹𝑁

Error Reduction = Error1 − Error2

Relative Error Reduction =
Error Reduction

Error1

PI(X, Y) =
Error𝑋 − Error𝑌

Error𝑌

Mean accuracy =
1
𝑛

𝑛∑︁
𝑖=1

model accuracy𝑖

Standard Deviation, 𝜎 =

√√
1

𝑛 − 1

𝑛∑︁
𝑖=1

(𝑥𝑖 − 𝑥)2

9.4 Feature Sets

Table 6: Features present when using 30% of feature space

No. Feature Name No. Feature Name

1 Subflow Bwd Bytes 12 Pkt Length Min
2 Fwd Pkt/Bulk Avg 13 Active Min
3 ECE Flag Count 14 Total Length of Bwd Pkt
4 Fwd Pkts/s 15 Bwd Pkt Length Std
5 Total Length of Fwd Pkt 16 Idle Std
6 Idle Min 17 Fwd IAT Max
7 Subflow Fwd Bytes 18 Fwd Bytes/Bulk Avg
8 Fwd Seg Size Min 19 Fwd Header Length
9 Bwd IAT Std 20 URG Flag Count
10 Fwd Pkt Length Max 21 Average Pkt Size
11 Active Std 22 Label

Table 7: Features present when using 50% of feature space

No. Feature Name No. Feature Name

1 Bwd Pkts/s 20 Fwd IAT Max
2 Fwd IAT Std 21 Fwd Pkt Length Max
3 Fwd PSH Flags 22 Bwd IAT Mean
4 Bwd Pkt Length Std 23 Total Bwd Pkts
5 Total Length of Fwd Pkt 24 Bwd Header Length
6 Subflow Fwd Pkts 25 FWD Init Win Bytes
7 Subflow Bwd Bytes 26 Idle Std
8 Bwd Init Win Bytes 27 Bwd Bulk Rate Avg
9 Flow IAT Std 28 Flow Duration
10 URG Flag Count 29 Bwd Pkt/Bulk Avg
11 Bwd IAT Max 30 Bwd IAT Total
12 Active Mean 31 Pkt Length Variance
13 Pkt Length Mean 32 Idle Max
14 Flow IAT Max 33 Fwd Pkt Length Mean
15 Pkt Length Min 34 Fwd Act Data Pkts
16 Pkt Length Max 35 ACK Flag Count
17 Fwd Bulk Rate Avg 36 Fwd IAT Mean
18 Total Fwd Pkt 37 SYN Flag Count
19 Fwd Pkt Length Std

Table 8: All the features present in flow extraction from CICFlowMeter

No. Feature Name No. Feature Name

1 Flow ID 43 Fwd Pkts/s
2 Src IP 44 Bwd Pkts/s
3 Src Port 45 Pkt Length Min
4 Dst IP 46 Pkt Length Max
5 Dst Port 47 Pkt Length Mean
6 Protocol 48 Pkt Length Std
7 Timestamp 49 Pkt Length Variance
8 Flow Duration 50 FIN Flag Count
9 Total Fwd Pkt 51 SYN Flag Count
10 Total Bwd Pkts 52 RST Flag Count
11 Total Length of Fwd Pkt 53 PSH Flag Count
12 Total Length of Bwd Pkt 54 ACK Flag Count
13 Fwd Pkt Length Max 55 URG Flag Count
14 Fwd Pkt Length Min 56 CWR Flag Count
15 Fwd Pkt Length Mean 57 ECE Flag Count
16 Fwd Pkt Length Std 58 Down/Up Ratio
17 Bwd Pkt Length Max 59 Average Pkt Size
18 Bwd Pkt Length Min 60 Fwd Segment Size Avg
19 Bwd Pkt Length Mean 61 Bwd Segment Size Avg
20 Bwd Pkt Length Std 62 Fwd Bytes/Bulk Avg
21 Flow Bytes/s 63 Fwd Pkt/Bulk Avg
22 Flow Pkts/s 64 Fwd Bulk Rate Avg
23 Flow IAT Mean 65 Bwd Bytes/Bulk Avg
24 Flow IAT Std 66 Bwd Pkt/Bulk Avg
25 Flow IAT Max 67 Bwd Bulk Rate Avg
26 Flow IAT Min 68 Subflow Fwd Pkts
27 Fwd IAT Total 69 Subflow Fwd Bytes
28 Fwd IAT Mean 70 Subflow Bwd Pkts
29 Fwd IAT Std 71 Subflow Bwd Bytes
30 Fwd IAT Max 72 FWD Init Win Bytes
31 Fwd IAT Min 73 Bwd Init Win Bytes
32 Bwd IAT Total 74 Fwd Act Data Pkts
33 Bwd IAT Mean 75 Fwd Seg Size Min
34 Bwd IAT Std 76 Active Mean
35 Bwd IAT Max 77 Active Std
36 Bwd IAT Min 78 Active Max
37 Fwd PSH Flags 79 Active Min
38 Bwd PSH Flags 80 Idle Mean
39 Fwd URG Flags 81 Idle Std
40 Bwd URG Flags 82 Idle Max
41 Fwd Header Length 83 Idle Min
42 Bwd Header Length 84 Label
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9.5 Model Architectures
9.5.1 Binary Classifier Architectures

Table 9: Model Descriptions for Binary Classifiers 100% Feature Space

Model Layer Type Kernel Activation
MLP Input 0,74 -

Dense 74,33 Tanh
Dense 33,1 Sigmoid

CNNv1 Input 0,74, 1 -
Conv1D 3,1,128 ReLU

MaxPool1D 2 -
Conv1D 3,128,416 ReLU

MaxPool1D 2 -
Flatten - -
Dense 7072,352 ReLU
Dense 352,1 Sigmoid

CNNv2 Input 0,74,1 -
Conv1D 3,1,40 ReLU

MaxPool1D 2 -
Conv1D 3,40,136 ReLU

MaxPool1D 2
Conv1D 3,136,232 ReLU

MaxPool1D 2
Dropout rate=0.5 -
Flatten - -
Dense 1624,104 ReLU
Dropout rate=0.5 -
Dense 104,104 ReLU
Dense 104,40 ReLU
Dense 40,1 Sigmoid

AE Input 0x74 -
Dense 74,232 Tanh
Dense 232,72 Tanh
Dense 72,40 Tanh
Dense 40,104 Tanh
Dense 104,232 Tanh
Dense 232,1 Sigmoid

AE+CNN Input 0x74 -
Dense 74,136 ReLU
Dense 136,136 ReLU
Dense 136,72 ReLU
Dense 74,104 ReLU
Dense 104,136 ReLU
Reshape (136,1) -
Conv1D 3,1,64 ReLU

MaxPool1D 1 -
Conv1D 3,64,32 ReLU

MaxPool1D 1 -
Flatten - -
Dense 4224,8 ReLU
Dense 8,1 Sigmoid

Table 10: Model Descriptions for Binary Classifiers 50% Feature Space

Model Layer Type Kernel Activation
MLP Input 0,22, -

Dense 22,33 Tanh
Dense 33,1 Sigmoid

CNNv1 Input 0,37,1 -
Conv1D 3,1,160 ReLU

MaxPool1D 2 -
Conv1D 3,160,224 ReLU

MaxPool1D 2 -
Flatten - -
Dense 1568,384 ReLU
Dense 384,1 Sigmoid

CNNv2 Input 0,37,1 -
Conv1D 3,1,8 ReLU

MaxPool1D 2 -
Conv1D 3,8,104 ReLU

MaxPool1D 2
Conv1D 3,104,40 ReLU

MaxPool1D 2
Dropout rate=0.5 -
Flatten - -
Dense 80,72 ReLU
Dropout rate=0.5 -
Dense 72,136 ReLU
Dense 136,72 ReLU
Dense 72,1 Sigmoid

AE Input 0,37 -
Dense 37,168 Tanh
Dense 168,104 Tanh
Dense 104,200 Tanh
Dense 200,200 Tanh
Dense 200,232 Tanh
Dense 232,1 Sigmoid

AE+CNN Input 0,37 -
Dense 37,200 ReLU
Dense 200,168 ReLU
Dense 168,104 ReLU
Dense 104,72 ReLU
Dense 72,200 ReLU
Reshape (200, 1) -
Conv1D 3,1,256 ReLU

MaxPool1D 1 -
Conv1D 3,256,64 ReLU

MaxPool1D 1 -
Flatten - -
Dense 12544,8 ReLU
Dense 8,1 Sigmoid
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Table 11: Model Descriptions for Binary Classifiers 30% Feature Space

Model Layer Type Kernel Activation
MLP Input 0,22 -

Dense 22,33 Tanh
Dense 33,1 Sigmoid

CNNv1 Input 0,22,1 -
Conv1D 3,1,288 ReLU

MaxPool1D 2 -
Conv1D 3,288x,320 ReLU

MaxPool1D 2 -
Flatten - -
Dense 1280,480 ReLU
Dense 480,1 Sigmoid

CNNv2 Input 0,22,1 -
Conv1D 3,1,72 ReLU

MaxPool1D 2 -
Conv1D 3,72,104 ReLU

MaxPool1D 2
Conv1D 3,104,200 ReLU

MaxPool1D 2
Dropout rate=0.5 -
Flatten - -
Dense 200,232 ReLU
Dropout rate=0.5 -
Dense 232,104 ReLU
Dense 104,40 ReLU
Dense 40,1 Sigmoid

AE Input 0,22 -
Dense 22,72 Tanh
Dense 72,168 Tanh
Dense 168,232 Tanh
Dense 232,40 Tanh
Dense 40,40 Tanh
Dense 40,1 Softmax

AE+CNN Input 0,22 -
Dense 22,40 ReLU
Dense 40,136 ReLU
Dense 136,104 ReLU
Dense 104,40 ReLU
Dense 40,232 ReLU
Reshape (232, 1) -
Conv1D 3,1,192 ReLU

MaxPool1D 1 -
Conv1D 3,192,32 ReLU

MaxPool1D 1 -
Flatten - -
Dense 7296,168 ReLU
Dense 168,1 Sigmoid

9.5.2 Multiclass Classifier Architectures

Table 12: Model Descriptions for Multiclass Classifiers 100% Feature Space

Model Layer Type Kernel Activation
MLP Input 0,74 -

Dense 74,128 Tanh
Dense 128,4 Softmax

CNN v1 Input 0,74,1 -
Conv1D 3,1,232 Tanh

MaxPooling1D - -
Conv1D 3,232,232 Tanh

MaxPooling1D - -
Dropout rate=0.35 -
Flatten - -
Dense 3944,72 Tanh
Dense 72,4 Softmax

CNNv2 Input 0,74,1 -
Conv1D 3,1,232 Tanh

MaxPooling1D - -
Conv1D 3,232,104 Tanh

MaxPooling1D - -
Conv1D 3,104,40 Tanh

MaxPooling1D - -
Dropout rate=0.25 -
Flatten - -
Dense 280,296 Tanh
Dropout rate=0.25 -
Dense 296,456 Tanh
Dense 456,168 Tanh
Dense 168,4 Softmax

AE Input 0,74 -
Dense 74,168 Tanh
Dense 168,104 Tanh
Dense 104,104 Tanh
Dense 104,40 Tanh
Dense 40,104 Tanh
Dense 104,4 Softmax

AE+CNN Input 0,74 -
Dense 74,136 Tanh
Dense 136,104 Tanh
Dense 104,72 Tanh
Dense 72,40 Tanh
Dense 40,104 Tanh
Reshape (104,1) -
Conv1D 3,1,32 Tanh

MaxPooling1D - -
Conv1D 3,32,96 Tanh

MaxPooling1D - -
Flatten - -
Dense 9600,168 Tanh
Dense 168,4 Softmax
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Table 13: Model Descriptions for Multiclass Classifiers 50% Feature Space

Model Layer Type Kernel Activation
MLP Input 0,37 -

Dense 37,96 Tanh
Dense 96,4 Softmax

CNN v1 Input 0,37,1 -
Conv1D 3,1,136 Tanh

MaxPooling1D - -
Conv1D 3,136,232 Tanh

MaxPooling1D - -
Dropout rate=0.25 -
Flatten - -
Dense 1624,104 Tanh
Dense 104,4 Softmax

CNNv2 Input 0,37,1 -
Conv1D 3,1,264 Tanh

MaxPooling1D - -
Conv1D 3,264,296 Tanh

MaxPooling1D - -
Conv1D 3,296,456 Tanh

MaxPooling1D - -
Dropout rate=0.25 -
Flatten - -
Dense 912,136 Tanh
Dropout rate=0.25 -
Dense 136,360 Tanh
Dense 360,40 Tanh
Dense 40,4 Softmax

AE Input 0,37 -
Dense 37,136 Tanh
Dense 136,136 Tanh
Dense 136,136 Tanh
Dense 136,200 Tanh
Dense 200,72 Tanh
Dense 72,4 Softmax

AE+CNN Input 0,37 -
Dense 37,232 Tanh
Dense 232,200 Tanh
Dense 200,8 Tanh
Dense 8,40 Tanh
Dense 40,168 Tanh
Reshape (104,1) -
Conv1D 3,1,64 Tanh

MaxPooling1D - -
Conv1D 3,64,64 Tanh

MaxPooling1D - -
Flatten - -
Dense 10496,168 Tanh
Dense 168,4 Softmax

Table 14: Model Descriptions for Multiclass Classifiers 30% Feature Space

Model Layer Type Kernel Activation
MLP Input 0,22 -

Dense 22,128 Tanh
Dense 128,4 Softmax

CNN v1 Input 0,22,1 -
Conv1D 3,1,136 Tanh

MaxPooling1D - -
Conv1D 3,136,232 Tanh

MaxPooling1D - -
Dropout rate=0.35 -
Flatten - -
Dense 928,72 Tanh
Dense 72,4 Softmax

CNNv2 Input 0,221 -
Conv1D 3,1,200 Tanh

MaxPooling1D - -
Conv1D 3,200,72 Tanh

MaxPooling1D - -
Conv1D 3,72,392 Tanh

MaxPooling1D - -
Dropout 0.25 -
Flatten - -
Dense 392,296 Tanh
Dropout 0.25 -
Dense 296,232 Tanh
Dense 232,232 Tanh
Dense 232,4 Softmax

AE Input 0,22 -
Dense 22,232 Tanh
Dense 104,232 Tanh
Dense 104,232 Tanh
Dense 232,40 Tanh
Dense 40,232 Tanh
Dense 232,4 Softmax

AE+CNN Input 0,22 -
Dense 22,232 Tanh
Dense 232,200 Tanh
Dense 200,200 Tanh
Dense 200,72 Tanh
Dense 72,72 Tanh
Reshape (104x1) -
Conv1D 3,1,224 Tanh

MaxPooling1D - -
Conv1D 3,224,64 Tanh

MaxPooling1D - -
Flatten - -
Dense 4352,200 Tanh
Dense 200,4 Softmax
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